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0.1 This paper considers the mathematical principles of lattice
theory oriented toward the theory of computation. This relatively
new direction can be traced back to the explanation of recursive
definitions as fixed point of monotonic (actually continuous)
operators. The usual operational explanation (Kleene's first
recursion theorem) is replaced by a pure lattice theoretical
existence thecrem.

Another problem for which the lattice approach provided
a“significant clarification was the so-called selt-application of
functions. Introduced first in some formal systems of A-calculus
and combinatory logic it was accepted later as a proper procedure
for the definition of algorithms in programming languages, the
implication being then that there existed a clear operational
meaning for such procedure. Again the discovery by Scott of
models in which such self-application was available provided a
mathematical meaning for an operational notion. But it is important
to notice that-contrary to the situation for recursive definitions-
it is not clear whether the mathematical notion of self-application
corresponds to the operational.

More recently (see [7]) the lattice approach has been found
useful for the definition of data structures. In all these

applications a number of constructions appear frequently:

retractions, projection, representations. ?g‘y”'” ":Z”///
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0.2 We attempt here a systematic treatment of the lattice
theory involving the definition of data structures. We consider
monotonic rather than continuous functions and show that a number
of results appear quite natural in this more general setting.
Then we try to characterize whenever possible the situation

arising by assuming continuity.

0.3 Most of the notation we use is standard in lattice theory
or in the work of Scott. What we call here a lattice is usually
called a complete lattice. We use the shorter expression only
because this is the only type of lattice considered in the paper.
The name representation originates from Reynolds (seé for instance (4])
who actually refers only to what we call continuous representation.
It should be noted that the general notion of representation is
quite old and apparently was introduced by Ore in [3] as Galois
connection. The formulation is not exactly the same but it is
clear that the notions are equivalent. 1In Everett [2] the
expression Galois correspondence is used.

In place of continuous lattice we use injective lattice;
a term which is also used by Scott. Since the qualification
continuous is used in many places in this paper we think it is wiser
to avoid using the same term with a different connotation. Finally
compactly generated lattices are known from Crowley ({l] and appear

as algebraic lattices in Scott [7] with some extra restrictions.
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1. Definitions and notation.

1.1 Domains. A domain is a non empty set D with a partial order
on D. Such partial order will be denoted in the form x ¢ y. We
use D to denote both the set and the partial order. If D' is
another partial order we write x c' y to indicate the relation in
D’; but if there is no danger of confusion we may write just
xCy.

If D is a domain and D' is a subset of D then we consider D'
as a partial order where the order relation is the restriction to
D' of the order relation in D. We call then D' a subdomain of D.

If D is a domain and X < D is such that X is not empty and
whenever x € X and y € X there is v € X such that x ¢ v and yc v

then we say that X is a directed subset of D.

1.2 Lattices. If D is a domain and X < D then the notion of upper
bound of X (u.b. of X) and lower bound of X (1.b. of X) is defined
in the usual way. In case there is a least upper bound of
X (l.u.b. of X) it is denoted LIX; and in case there is a greatest
lower bound of X (g.l.b. of X) it is denoted [1X. The domain D
is called a lattice in case LIX and []X exists for every X ¢ D. It
is well known that in order for D to be a lattice it is sufficient
that LIX (or of LIX) exists for every X c D.

If D is a lattice, D' is a subdomain of D and D' is itself a
lattice then D' is called a sublattice of D. Notice that this
does not mean that for any X ¢ D' the l.u.b. in D is the same as the

l.u.b. in D'. Whenever we have to distinguish we shall note by




[1'x and [1'X the 1l.u.b. and g.l.b. of X in D', respectively. Note
that LUx = U'X if and only if LIX € D'; and similarly for []X.
A sublattice of D' of D is said to be |l]-closed in case that for
every X < D' we have UUX ¢ D' and is said to be [l-closed in case
that [1X € D' for every X ¢ D'. Finally if D' is a sublattice of
D such that whenever X ¢ D' and X is directed then LIX € D' we say
that D' is a sublattice of finite character in D.

In a lattice D the element LID is denoted by T and the element

[lD is denoted by .

1.3 Functional domains. Let D and D' be lattices. Then D D'
denotes the set of all functions which are defined for every x ¢ D and
the value is always in D'. If f and g are elements of D —— D'

we define f c g to hold exactly when f(x) c g(x) for every x ¢ D.

This is easily seen to be a partial order. Furthermore D———— D'

is a lattice where the lattice operations are defined as follows.

If F ¢ D——= D' then

UF (x) U{f(x) : £ ¢ F)

F (x)

[T{f(x) : £ ¢ F}

1.3.1 A function f ¢ D—— D' is monotonic in case that when-
ever x © y then f(x) c f(y). The set of all monotonic functions is
denoted by D —2— D' and it is both [|-closed and [1-closed

sublattice of D — D'.
1.3,2 If f e D——— D' and X ¢ D we put £(X) = {f(x) : x € X}.

The function f is continuous in case that f([|X) = [Jf(X) whenever

X ¢ D is directed. The set of all continuous functions is denoted

e WO e e e —— e
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D'; it is a |l-closed sublattice of D——— D".

D

1.3.3 In case f(lJX) = LIf(X) holds for arbitrary X < D the
function f is called additive. The set of all additive functions

is denoted D——é———* D' and it is a |l-closed sublattice of

D=t B

1.3.4 Finally if £([1X) = [1£(X) for arbitrary X < D then f is
a coadditive function. The set of all coadditive functions is denoted

pD—S2 — p'. 1t is a []-closed sublattice of D——— D'.

1.3.5 We note the following property of functions f ¢ D—— D'.
If D; < D is [l-closed ([1-closed) sublattice of D and f is

additive (coadditive) then f(D,) is [J-closed ([1-closed) sublattice
of D'. Now let us put R(f) = f(D). Then R(f) is |J~closed
([M-closed) sublattice of D' whenever f is an additive (coadditive)

function.

1.3.6 There are other classes of functions we may want to conside:

but in general they do not form sublattices of D — D'. 1f

f satisfies the condition that x c y if and only if f(x) c f(y)

then f is said to be strictly monotonic. If f is strictly monotonic

then it is 1-1. Furthermore if R(f) is |J-closed ([l-closed) (of

finite character) in D' then f is additive (coadditive) (continuous).
If f ¢ D — D' is strictly monotonic and onto then f is

called an isomorphism of D onto D'. Such f is both additive and

coadditive. The inverse of an isomorphism is also an isomorphism.

Finally note the following property. If f is 1-1 and additive or
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coadditive then f is strictly monotonic.

1.3.7 The identity function on a lattice D will be denoted by

ID or simply by I when there is no risk of confusion.

1.3.8 Composition of functions is defined in the usual way. If

feD D* andig € P* ——— = D!* then g ¢ £ e D ———= D"".

All the lattices introduced in 1.3.1, 1.3.2, 1.3.3, 1.3.4, and 1.3.6

are closed under composition.




2. Retraction, closures and projections.

In this section we study sublattices of a lattice D induced
by monotonic functions satisfying some conditions. First we prove
some results that hold for arbitrary monotonic functions. If
f e D—— D we put Fix(f) = {x : f(x) = x}.

m

2.1.1 Lemma. Let f € D D and put D; = {x : f(x) & x}.

Then Dl is [1-closed sublattice of D. If f is continuous then

D, is of finite character in D.

X
Take X < D1 to show [1X ¢ Dl' For every x € X we have

MX c x hence £([1X) = f(x) c x. It follows that f([]x) < [x,

so [1X ¢ D,. Assume now that X ¢ D, is directed. Then

f(Ux) = UE(X) = LUX. Hence X ¢ D, -

2.1.2 Lemma. Let f ¢ D<——m——-D and put D2 = {x : x c £(x)}.
Then D, is [J~closed sublattice of D.

This is the dual of the corresponding part in 2.1.1.

2.1.3 Corollary. Let f € D —8—~ b and Dl and D2 be defined

as in 2.1.1 and 2.1.2. Then Fix(f) = Dy n D, is |J~closed

sublattice of D, and also []-closed sublattice of D If £ is

1 2°
continuous then Fix(f) is of finite character in D.
The first part follows from 2.1.1 and 2.1.2. 1If f is

continuous and X < Fix(f) is directed then f([[X) = [Uf(x) = LX.

m ’
2.2.1 A function £ € D——— D such that f o £ = f is called a
retraction in D. Note that in case f is a retraction then

Fix(f) = R(f). 1If f is a retraction such that I c f then f is




e

e

called a closure in D. And in case that f = I then f is called
a projection in D. If f is a retraction (closure) (projection)
in D and f is continuous then f is a continuous retraction (closure)

(projection) in D.

2.2.2 Theorem. If f is a retraction (closure) (projection) in
D then R(f) is a sublattice ([]-closed sublattice) (|| -closed
sublattice) of D. If f is continuous then R(f) is of finite
character in D.

These are easy consequences of 2.1.1, 2.1.2 and 2.1.3.

2.2.3 Theorem. Let f be a closure in D such that R(f) is of
finite character in D. Then f is continuous.

Take X ¢ D directed, to show F(lIX) < [Jf(X). Note that f(X)
is also directed and since f(X) ¢ R(f) we have f(|]Jf(X)) = LJf(X).
Now if x € X then x ¢ f(x) ¢ Uf(X), hence LIXc LJf(X) so

fE(UX) = JEX).

2.3 1If D' is a sublattice of a lattice D such that there is

a retraction (closure) (projection) f and D' = R(f) then D' is
called a retraction (closure) (projection) in D. In case f is
continuous then it is called a continuous retraction (closure)

(projection) in D.

2.3.1 Theorem. If D' is a sublattice of D then D' is a retraction
in D. If D' is []-closed (|l]-closed) then D' is a closure (projection)
in D.

There are many retractions f such that D' = R(f). The maximal

one (in the ordering of D ——— D) is the function

8




t IR, Ay e

fl(y) = *ix € D' : ¥ & %}
which is easily seen to be a retraction such that D' = R(fl). If
D' is []-closed then f, is a closure. The minimal retraction is
the following:

f,(y) = LU'ixed' : xcyl

and in case D' is |J-closed £, is a projection.

2.3.2 As mentioned above in general there are many retractions
f such that D' = R(f). But in case D' is []-closed (|]-closed)
the closure (projection) f such that D' = R(f) is unique.
Note also that from 2.2.3 it follows that D' is a continuous
closure in D if and only if D' is []-closed and of finite character

in D.

2.4 We consider now some examples. If D is a lattice and v € D

then [v) = {x : vc x} and (v] = {x : x c v}. We denote by

Ewp, p~E—p, p-bsp p-CLup, p—-Peupand

D
D —<EB—— p the set of all retractions, continuous retractions,
closures, continuous closures, projections and continuous projections

in D, respectively.

2.4.1 The sets [v) and (v] are both of finite character in D. The set
[v) is r]-closed hence it is a continuous closure in D. The set
(vl lU-closed so it is a projection in D.

2.4.2 Let g(f) = £ o £ be a function on functions £ €¢ D — D.

-t D) (D

Clearly q € (D — D) hence the set D

l=
{f ¢e D —"— D : q(f) c f} is []-closed in D—=— p. It follows




1

that D = D=D, n [I) is also [l-closed in p—&8— p

1
hence it is a closure in this set.

2.4.3 A similar argument shows that D—E— D is a projection
m

in D D.

2.4.4 We may restrict the operation gq(f) to continuous f. 1In

C C

this case we have q € (D D) =

(D + D). Now the

set D, = {f ¢ D—S— D : q(f) c f} is not only []-closed but also

1
ccl

of finite character. Hence D ———— D = Dl n [I) is a continuous

: [o]
closure in D—— D.

2.4.5 The dual argument shows only that D —P— p is a projection
(o

in. BD————% B

2.4.6 The argument given in [7], Theorem 5.5 shows that the unique
continuous closure V in D-——E——* D such that R(V) = C _EEl_» D

is given by the following expression:

V(v) = Ax. Y(Ay. x v £(y))

where Y is the fixed point operator.

10
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3. Connections and Representations.

In the preceding section we have introduced several relations
between lattices assuming in general that one lattice is a sub-
lattice of the other. 1In applications we have lattices which are
not so related and the obvious approach is to extend the notions
via isomorphisms. What we shall do is rather to generalize the
relations and show that they can be reduced to the originals up to
isomorphism. The generalizations take the form of connections
and representations between lattices, and provide an extremely
useful tool to study the relations. It is essentially a
factorization technique in which different factors represent
different aspects of the total relation.

3.1 Let D and D' be lattices. A connection between D and D' 1is

a pair of functions (f,g) such that f € D -0 . p, g € D° B . p,
f ogo f=f, and g o f 0 g = g. Note that the two last conditions
are satisfied in case f o0 g = I or g o f = I. Note also that in
case (f,g) is a connection between D and D' then (g,f) is a
connection between D' and D.

If follows immediately from the definition that whenever (f,q)
is a connection between D and D' then g o f is a retraction in D

and f o g is a retraction in D'.

3.1.1 Theorem. Let (f,g) be a connection between D and D'. Then
f restricted to R(g) is an isomorphism of R(g) onto R(f), and g

restricted to R(f) is the inverse isomorphism of R(f) onto R(qg).

11
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Since R(f) = R(f o g) it follows that f restricted to R(g)
is onto R(f). By assumption f is monotonic; so we need to prove
only that whenever Y, € R(qg), Y, € R(g) and f(yl) < f(yz) then
Y] € Y, Let g(xl) -y and g(xz) = Yy Then

> e q(xl) = g(f(q(xl))) c g(f(g(x,))) = g(xz) il =

3.1.2 Theorem. Let D and D' be lattices; let Dy be a sublattice
of D and Di be a sublattice of D'; let h be an isomorphism of
Dl onto Di. Then there is a connection (f,g) between D and D'
such that R(f) = i, R(g) = Dl' for % s D1 f(x) = h(x) and for
y € D] gly) = hty).

We shall denote by LJl and FTI the join and meet operation

in Dl and Di respectively. We define then f and g as follows:

f(x)

r1l{y €D} : xC h-l(y)}

gly) = U;{x e D, : h(x) C y}

It is clear that R(f) < Di and R(g) < Dl’ It is easy to verify that

for x ¢ D1 g(h(x)) = x and for y € D! f(h-l(y)) = y, hence

1
£(x) = £(h"L(h(x))) = h(x) and g(y) = g(h(h~X(y))) = h™l(y). we

have also

£(g(£(x))) = £(h"T(£(x))) = £(x)

g(f(g(y))) = g(h(g(y))) gly)

3.1.3 Theorem. Let (f,g) be a connection between D and D'. The

following conditions are equivalent:

12
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i) fog=1 (gof =1)
ii) f is onto D' (f is 1-~1)

iii) g is 1-1 (g is onto)

That i) implies ii) and iii) is clear. From f og o f = f
it follows that ii) implies i), and from g o f o g = g that
iii) implies 1i).
3.2 A connection (f,g) between D and D' is continuous in case
both f and g are continuous functions. 1In case f 0 g = I the
connection (f,g) is called a retraction of D' into D and it is
called a continuous retraction in case both f and g are continuous
functions. If there is a (continuous) retraction of D' into D we
shall say that D' is a (continuous) retraction of D.

This notation is consistent with that of 2.2.1. For suppose

that f ¢ D —2—— D so we may consider f ¢ D—2—— R(f). Define
g(y) =y for y ¢ R(f), hence g ¢ R(f)-—m———~ D. It follow that f

is a (continuous) retraction in D if and only if (f,g) is a
(continuous) retraction of R(f) into D. The argument is straight-
forward but note that g ¢ R(f) —S—— D if and only if R(f) is

of finite character in D. Note also that in case R(f) is of finite
character in D and f ¢ D—S—— R(f) then £ ¢ D —S— D.

3.3 A representation between lattices D and D' is a pair of
function (f,g) such that f ¢ p —— D', g ¢ p' —&— D, Icgof,
and f 0 g = I. A representation is a connection because from
Icgof it follows that fc f ogo fandgc go f og, and

from f 0 g ¢ I it follows that f o go fc f andgo f o gc g.

13




The study of representations is facilitated by introducing

the following two operators ¢(g) and y(f)

¢ ¢ ('—"—p)—2 - p—" . pv)
ve (D—2—p)—2 — (p—2 . p)

which are defined as follows:

¢ (g) . [T{y : x = g(y)}

v(f) Ay. Uix : £(x) ¢ y} 3

It is easy to check that g = ¥(¢(g)) and ¢(¥(f))  f but
(¢,¢) is not a representation since neither ¢ nor ¢ is monotonic.

3.3.1 Theorem. Let f ¢ D—=— D' and g € D' —®— D. The

following conditions are equivalent:
i) (f,g) is a representation between D and D'.
ii) For arbitrary x e D and y € D': f(x) ¢ y if and only
if x c g(y).
iii) ¢(g) = £ and yY(f) = g.
iv) f ¢ D—2—= D' and y(f) = g.
v) f ¢ ¢(g) and ¥(f)  g.

vi) g ¢ D' —2— p and ¢(g) = £.

The implications from i) to ii) and from ii) to iii) are easy.
Assume that iii) holds to prove f is additive. Let X ¢ D; then for
x € X we have f(x) ¢ LIf(X). Since Y(f) = g this means
x c g(LUf(X)). This holds for every x € X so UX c g(LU£(X)). But

now since ¢(g) = f we have £(LUX) c Uf(X). So f is additive.

14
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B e Y =

{

Assume now iv) holds to prove f(x) = ¢(g) (x) for arbitrary
x € D. From y(f) = g and the additivity of f we get f(g(y)) c y
for arbitrary y € D'. Now if x ¢ g(y) then f(x) ¢ y. It follows
that f(x) < ¢(qg) (x).

Assume v) to prove vi). Consider Y < D'. If y € Y then
[Tg(¥) = g(y). Then from f = ¢(g) it follows that f([lg(Y)) c y.
Hence we have f([]g(Y)) & MY and from y(f) = g we get that

[1g(Y) = g([1Y), so g is coadditive. In order to prove that

¢ (g) f note that for arbitrary x ¢ D and the definition of Yy we

1

have x c y(f) (f(x)); hence from y(f) c g we have x = g(f(x)). But

this implies that ¢(g) c f.

If we assume vi) then from ¢(g) f we get immediately that

f o g= I. Using also the coadditivity of g we get
g(f(x)) = [ligly) : x c gl(y)!}
hence I c g o £.

3.3.2 Some consequences of the definition and Theorem 3.3.1 are
the following. If (f,qg) is a representation between D and D' then
g o f is a closure in D and f o0 g is a projection in D'. Hence
R(g) = R(g o f) is [l-closed in D and R(f) = R(f o g) is l]-closed
in D'. By 3.1.1 f restricted to R(g) is an isomorphism onto R(f).
Furthermore the function f is additive and the function g is

coadditive and one of them determines uniquely the othef.

3.3.3 Theorem. Let D and D' be lattices. Let D, be a []|-closed

1

sublattice of D and D! be a |]-closed sublattice of D'. Let h be an

1
isomorphism of D1 onto Di. Then there is a unique representation

15




(f,g) between D and D' such that R(f) = Di, R(g) = Dl' for
X € D1 f(x) = h(x) and for y ¢ Di gly) = h—l(y).

We define f and g exactly as in Theorem 3.1.2 and we need

only to show that I = g o f and f 0o g © I. Since Dy is |J-closed

in D' it follows that h ¢ Dl———é——* D'; in the same way since Dl
is []-closed in D we have Rl D} —<C2 . p. Hence
f(g(y)) = h(g(y)) = Ui{h(x): x € D, A h(x) c y}
so clearly f(g(y)) = y. Also
R " -1 , -1
g(f(x)) = h “(f(x)) = [[{h “(y) : y e D} Axech "(y)}

so clearly x c g(f(x)).

To prove the uniqueness note that if (fl,gl) 1s another
representation such that f(x) = fl(x) for x ¢ Dy and g(y) = gl(y)
for y ¢ D}, then from x c g(f(x)) we get fl(x) E fl(g(f(x)) =

f(g(f(x))) = f(x) and similarly for the function g using f(g(y)) ¢ vy.

3.4 A representation (f,g) between D and D' is continuous in case

g € p' —<—— Dp. 1If g is 1-1 the representation is called a closure
of D' into D and D' is a closure of D. If g is continuous and 1-1
then (f,g) is a continuous closure of D' into D and D' is a
continuous closure of D. If f is 1-1 then the representation is
called a projection of D into D' and D is a projection of D'. 1In
case f is 1-1 and g is continuous then (f,g) is a continuous
projection of D into D' and D is a continuous projection of D'.

Note that Theorem 3.1.3 applies to representations.
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3.4.1 This notation 1is consistent with the notation of 2.2.1.

For let f ¢+ D B D so we may consider f ¢ p 12— R(f).

m

Define g(y) = y for y ¢ R(f) so g ¢ R(f) D. Then we have:
i) £ is a (continuous) closure in D if and only if (f,g) is a
(continuous) closure of R(f) into D. 1ii) f is a (continuous)

projection in D if and only (g,f) is a (continuous) projection

of R(f) into D.

3.4.2 The lattices that are closure (projections) of a given
lattice are characterized by 3.1.1 and 3.3.3 as exactly those
lattices which are isomorphic to a []-closed (|l]-closed) sublattice

of D. We can characterize the continuous closures of D as follows.

3.4.3 Theorem. A lattice D' is a continuous closure of a lattice
D if and only if D' is isomorphic to some [l-closed sublattice
of D of finite character in D,

This is essentially a consequence of Theorem 2.2.3.

3.5 Let (f,g) be a representation between D and D'. We can define
two operators o(h) and t(j) where h ¢ D——— D and 7 I D'—2—— p'
o(h) = f o hog
tT(3J) =g o0 jof .

Then it can be easily checked that (0,T) is a representation between
D—2— D and D' —>—— D'. We call (0,1) the representation

induced by (f,qg).

17




Assume now that (f,q) is a continuous representation between
D and D'. Then whenever h and j are continuous 0(h) and 1(j) are
also continuous. Furthermore it is possible to check that 1 is

also continuous when restricted to continuous functions. This

C

means that (0,7T) is a continuous representation between D

and D'—S— D'. It is called the continuous representation

induced by (f,qg).

3.5.1 Theorem. Let (f,g) be a (continuous) representation between
D and D' and let (0,1) be the (continuous) representation induced by
(f,9). If j is a (continuous) closure in D' then 1(j) is a
(continuous) closure in D and the function g maps R(j) onto
R(T(j)).

From I ¢ j it follows easily that I ¢ t©(I) = 1(j). Furthermore
(3} o 2tj) =g o j o fdgogoriEgeo]go]oE=9g0]ocf
To prove that g maps R(j) onto R(t(j)) take y € R(j), so j(y) = y.
Then 1(j) (g(y)) = g(3(f(g(y)))) C g(j(y)) = g(y), hence
g(y) € R(t(j)). Conversely let x € R(1(j)) then j(f(x)) € R(3)

and g(j(f(x))) = 1(j) (x) = x.

3.5.2 Theorem. Let (f,g) be a (continuous) representation between
D and D' and let (0,1) be the (continuous) representation induced
by (f,g). If h is a (continuous) projection in D then o(h) is a
(continuous) projection in D' and the function f maps R(h) onto
R(o(h)).

This is the dual of Theorem 3.5.1 and the proof is similar.

18
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Note that in the situation of Theorem 3.5.1 in case (f,g)
is a closure and j is a closure in D' then g is an isomorphism of

R(j) onto R(t(j)). Similar remark for Theorem 3.5.2.

3.6 We shall consider now some examples of these notions. 1If
D is a set then P(D) is the power set of D considered as a lattice

under the inclusion relation.

3.6.1 Let D be some lattice and Dl < D be some subset of D. We
can define a representation (f,g) between P(Dl) and D as follows:
for X = D, define f(X) = |JX and for y ¢ D define

gly) =1{x ¢ Dl : x = y}. This representation is a élosure if and
only D1 is a set of generators for D, namely in the case for every
y € D there is some X c D, such that y = UXx. Also (f,qg) is

continuous if and only if every element x ¢ D, satisfies the follow-

1
ing condition: if Y ¢ D is directed and x = LlY then there is some
y € Y such that x — y. An element like this will be called compact

in the next section.

3.6.2 1f D1 c D note that P(Dl) = (DI] in P(D) (see 2.4) so it
is |[l-closed in P(D). The corresponding projection is

£(X) = X n Dy for X ¢ D and it is a continuous function so P(D,)

is a continuous projection in P(D). Since P(Dl) is not [l-closed

it is not a closure in P(D); but it is actually a continuous closure

of P(D) given by the closure (f,g) where f is defined above and

g(Y) =Yu (D - Dl) for Y ¢ Dl.
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3.6.3 Let D be a lattice and consider the function

K &b ——* (D N D) defined K(y) = Ax.y. This function is
both additive and coadditive, and 1-1. Hence (K, y(K)) is a
projection of D into D —=.» p, Since Y(K) (3) = j(l) it follows

that the projection is continuous. On the other hand (¢ (K),bK) is

a continuous closure of D into D D. It is easy to check

t’hat $(K) (3) = 3(T).

3.6.4 Let K' € D-———— (D—2-— D) be defined as follows:
K'(y) (x) =] in case x = |; K'(y)(x) = ¥ in case x # |. This function
again is both additive, coadditive and 1-1. Hence (K',y(K')) is

a (continuous?) projection of D into p—2%— p ana (¢(K') ,K') is a
continuous closure of D into D—>— D. Also Q") () = 501 .

3.6.5 Consider the lattice P(w) where w is the set of non-negative
c

integers. The function graph € (P(w) Plw))—— Plaw)

defined in (7] is 1-1 and both additive and coadditive. It follows
that (¢(graph), graph) is a continuous closure of P(m)-—jL—ﬂ P(w)
into P(w), and (graph,y(graph)) is a projection of P(w)——g———* P(w)

into P(w). We shall show later that it is impossible to improve

the latter relation to a continuous projection.

3.6.6 As a final example we define the following continuous closure
in P(w). £(X) = {x : x + 1 € X} and g(Y) = {0} v {x + 1 : x € Y}.

This transformation is used in the definition of in !7], page 619.

4.1 1Injective and compactly generated lattices. In this section
we consider retraction, closures and projections involving lattices

satisfying special conditions. These conditions amount to requiring

20




that every element in the lattice is the join of elements that
are compact; in some cases we require the compactness property

to be absolute, in others only relative to the element generated.

4.1.1 Let D be a lattice and let u and y be elements of D. The
element u is compact relative to y in case that whenever X < D
is directed and y ¢ |lX then there is some x ¢ X such that
u c x. We use the notation u < y to denote that u is compact
relative to y. An element x € D such that x < x holds is called
compact.

We define the following sets. If y ¢ D then

BD(y) = g £ u <'y} and CD(y) = {x : x is compact and x c y!.

The set ED = CD(T) is the set of all compact elements in D.

4.1.2 We note several properties of these notions that follow

easily from the definitions. 1) the relation < is transitive;

2 B i o ('y then u = y; iii) 4if u <'y, vecuand yc x then v < x;

iv) Cyly) < Byly); v) Cp e D Sy {8) 3 ¥l) By e D —=eees P(D)..
Note that the relation < is equivalent to the similar

notated relation defined in [6] only for the lattices called

continuous in that reference.

4.1.3 A lattice D such that for every y ¢ Dy = |JBD(y) is called
injective. 1In case y = LJCD(y) for every y ¢ D the lattice is
called compactly generated. Clearly a compactly generated lattice

is injective. The lattice D is <-well founded in case that

there is in D no infinite sequence X, ,X.,.,...,X_,... such that
i it n

X 41 {{xn and x_ # X 41




4.1.4 Theorem. If a lattice D is injective and <-well founded then

it 1s compactly generated.

Assume D is not compactly generated and let Dl = {y : y # l]CD(y)}.
Let y be a minimal element in Dl relative to <: Since y = LJBD(y)
there is at least one x ¢ BD(y) such that x ¢ D, - Since x # vy
this contradicts the minimality of vy.
4.1.5 We give some examples of these notions. Let R be the set
of all real numbers with the usual order and two extra elements
| and . Here x {y means x = | or x < y. Since the only compact
element is | this lattice is not compactly generated but it is
injective.

Let D be some set. Then P(D) is compactly generated and

<~well founded. In this lattice X <Y means X is finite and
X c Y.

Let D be an infinite set and D' be the sublattice of P (D)
consisting of all finite subsets of D plus the set D itself. Here
X €Y holds if and only if X = | = @, so it is not an injective
lattice. Note that D' is (trivially) a <well founded lattice.

Finally let D be the nonegative integers where the order is
defined n c m if and only n > m, plus one extra element |. In

this lattice every element is compact so it is compactly generated,

but it is not <-well founded.

4.2 We want to investigate to what extent injective and compactly
generated lattices are related to continuous representations. In

one direction this is clarified by the next two theorems.

22
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4.2.1 Theorem. Let (f,g) be a representation between lattices
D and D' where D is injective and for every x € D f(BD(x)); BD.(f(x)).
Then g ¢ D"*—E——* D.

Let Y < D' be directed and assume v ¢ BD(q(LJY)). It follows
that f(v) < f(g(LY)) = LIY hence f(v) — y for some y ¢ Y. This

implies v © g(y) hence g(LlY) ¢ Ugr(y).

4.2.2 Theorem. Let (f,g) be a representation between lattices D

and D' where D is compactly generated and for every

X E D f(CD(x)) = CD,(f(x)). Then g € D' D.

The proof is similar.

4.3 We consider now the problem in the other direction, namely
assuming a connection or representation is continuous in which
way are related the compact elements of the lattices. The key

result is given by the following lemma.

4.3.1 Lemma. Let (f,g) be a continuous connection satisfying
the conditions £ o0 g = I. Then f(BD(g(y))) = BD,(y) for arbitrary
i i ke
Take x € g(y) to show f(x) {y. Let Y ¢ D' be directed and
y ¢ UY. Then g(y) = g(lJY) = Lg(Y). Hence there is v ¢ Y such

that x = g(v); it follows f(x) c f(g(v)) c v.

4.3.2 Corollary. 1f D is an injective lattice and D' is a
continuous retraction of D then D' is injective.

Let (f,g) be the continuous retraction of D' into D. Since
f o g =1 the preceding theorem applies. If y € D' then
gly) = UBg(g(y)) hence y = f(g(y)) = LUf(By(g(y)) c UBy'(y).
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4.3.3 Theorem. A lattice D is injective if and only if it is
a continuous retraction of P(D).

The lattice P(D) is injective so in case D is a continuous
retraction of P(D) 4.3.2 applies. Conversely assume D is injective
and we define f(X) = [[X for X < D then (f,BD) is a continuous
retraction of D into P(D). Clearly f(BD(y)) = y and f is additive,
so we need only to show BD is continuous. For this it is sufficient
to prove that BD(LJY) = LJ{BD(y) : ¥ € ¥} whenever Y € p is
directed. But []Y = |[]{v : There is y € Y and v ¢ BD(y)} which

is also directed set, hence if u < |]Y then u = v such that

v < y for some y € Y. It follows that u ¢ BD(y).

4.3.4 Theorem. Let (f,g) be a continuous representation between
D and D'. Then f(BD(x)) < BD,(f(x)) and f(CD(x)) < CD,(f(x)) for
every x € D.

Assume u < x; then u < g(f(x)) hence by 4.3.1 f(u) < f(x).

Similar argument if u {u c x.

4.3.5 Corollary. Let (f,g) be a continuous closure of D' into D.
If D is compactly generated then D' is also compactly generated.
Furthermore f(CD(g(y))) = CD,(y) for y € D'.

Let y € D' and f(x) = y. Then f(x) = f(IJCD(x)) = lJf(cD(x)) c
UCD.(f(x)) - lJCD.(Y).

Now to prove f(CD(g(f(x))) = CD,(f(x)) we need to eonsider
only the inclusion from right to left. Let v € CD.(f(x)); then

g(v) C g(f(x)) and v = f(g(v)) = Ljf(cD(g(v))). Since v is compact




i

this means v = f(u) for some u ¢ CD(g(v)), but then u ¢ CD(g(f(x)).

4.3.6 Theorem. A lattice D is compactly generated if and only
if it is a continuous closure of P(D).

Since P(D) is compactly generated in one direction the
equivalence follows from 4.3.5. 1In the other direction if we
define f(X) = X for X < ¢, then (f,CD) is a continuous closure
of D into P(ED) (see 3.6.1). But P(ED) is a continuous closure

of P(D) as explained in 3.6.2.

4.4 We have obtained characterizations of injective and compactly

generated lattices in terms of continuous retractions and

-

continuous closures. We present now a partial result that relates

<Lwell founded lattices and continuous projections.

4.4.1 Theorem. Let D be a continuous projection of D'. If D'
is <-well founded then D is also <-well founded.

Let (f,g) be a continuous projection of D into D'. Then

Theorem 4.3.4 applies and f is 1-1. It follows that any infinite
descending sequence in D will induce a corresponding infinite

p descending sequence in D'. Hence D is <-well founded.

4.4.2 Corollary. If D is a continuous projection of P(D) then

D is compactly generated and <}we11 founded.

4.5 We collect in this last section some results on the lattice
| of continuous functions. This matter has been considered in (6]

| so here we give only an outline of the arguments.

-
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4.5.1 First note that whenever D and D' are both injective
lattices then D —S— D' is also an injective lattice. To show

this define functions fu - where u ¢ D and v £ D'. If x € D

then f (x) = v in case u € x and f (x) = | otherwise. Since
u,v u,v

C

D 1s injective it follows that fu e D D'. Furthermore 1if

f e D —S— D' and v € f(u) then fu % < f. Now it is easy to

’

prove, using the fact that D' is also injective that for any such

function f we have f = LJ{fu o W < f(u)t.

’

4.5.2 A similar argument shows that whenever D and D' are compactly

generated then D —— p* is also compactly generated. To prove

this define functions . T where u ¢ D and v € D'. We put 9, v(x) = v
’ '
in case u ¢ x and 9, ¢ = | otherwise. It follows that in case
’
<
£ € D—

D' and v < f(u) then B B f. Furthermore if u is

compact in D and v is compact in D' then S is compact in D —=— D'.
’

Now it is easy to show (using the fact that both D and D' are
compactly generated) that whenever f ¢ D—S— D' then
v = D D'}'

4.5.3 Since D-—ESA—* D is a continuous closure of D-——Q——* D (see

f = LHqu : ve f(u) AueC, aveC

2.4.4) it follows that in case D is injective (compactly generated)
lattice then D-—Esl—~ D is also injective (compactly generated)

lattice.

4.5.4 For D —2— D we have a weaker result. Suppose D is
compactly generated and whenever u ¢ ED and u' c u then u' ¢ ED'
Then D —<B— p isg compactly generated. To prove this define

functions h  for u e D such that h (x) = u in case u c x and
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hu(x) = | otherwise. Such functions are always projections.
But if u is compact in D then hu e D—P 4 p and also it is
compact in this lattice. Note that DB p is ll-closed in

D —S— D (see 2.4.5). It is sufficient to prove now that

el

A { . b
D hu = £ For

this purpose we show that for arbitrary x ¢ D and v ¢ CD(f(x))

whenever f ¢ D —SB . D then f = LJ(hu s

there is u ¢ ED and hu = f such that v c h (x). Since

f(x) = LJf(CD(x)) there is u e C (x) such that v c f(u) c u so
u' = f(u) is also compact in D. Obviously we have v — hu.(x)
so we need only to show hu' c f. Now if for some y ¢ D we have

u'c yand h ,(y) = u' then u' = f(u') c f(y).

4.5.5 Finally we consider a lattice D in which there is an infinite
sequence of elements UpreeerUipee. where each ug 1s compact,

A a ; TR fi mpact element in D
u; €U nd uy # Ui et v some fixed comp e '

v # | and put ;. ™ B v (see 4.5.2). These functions are all
il
: EERREE ~ - e v s
compact in D D, 9i+1 S 94 and 941 * 9 hence D D is
not <-well founded. In particular P(w) —=— P(w) is not a

continuous projection of P(w).
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